If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7x+x^2=20
We move all terms to the left:
-7x+x^2-(20)=0
a = 1; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·1·(-20)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{129}}{2*1}=\frac{7-\sqrt{129}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{129}}{2*1}=\frac{7+\sqrt{129}}{2} $
| Ax7=1757 | | 5/x+1=0 | | X^2+3x=10x+20 | | 4=2/7r=-4 | | (x−7)7/5=128 | | 9x-(5x-4)=4x+4 | | -5n=8 | | 7y-2=3y+8 | | 4.1+1.8n=-0.40 | | 2*a¨3+a¨2+3-340=0 | | (5(1-n)/2)-1=3 | | 2u=4/5 | | 4x=8-5x | | 14=7/2v | | 4x-10=12-2x | | 3x-22=41 | | −6w+7=49 | | z=−2 | | 200=x²-9.8x | | 19d=14 | | 2x^2=18/81 | | 12t=9 | | r−2=8 | | 6(x-4+3x+7=3 | | 6x-4+3x+7=3 | | 15n=13 | | 2/3×x+1/2=3/4 | | 39t=15 | | 39t=15 | | 11x=17 | | -2x+6x=7x+5 | | 2/3•x+1/2=3/4 |